

Target Language-Aware Constrained Inference for Cross-lingual Dependency Parsing Tao Meng¹, Nanyun Peng², Kai-Wei Chang¹

Information Sciences Institute

¹University of California, Los Angeles ²University of Southern California

Overview

Task: Cross-lingual Dependency Parsing

We are trying to capture differences between languages.

(hi) यह मेरा पहला सम्मेलन पोस्टर है। (zh) 大会提供的午饭真好吃。 (es) La oración anterior es lo que supongo.

Motivations

• Prior work: focus on capturing *commonalities* between languages.

Inference with Corpus-Statistics Constraints

- Lagrangian Relaxation (Right).
 - Constrained inference problem can be formulated as an ILP: $\max_{Y \in \mathcal{U}} \sum_{k,i,j} S_{ij}^{(k)} y_k(i,j) \text{ s.t. } r_i - \theta_i \leq R(C_i,Y) \leq r_i + \theta_i, i \in [N]$
 - Solve approximately by Lagrangian Relaxation:
 - Lagrangian multipliers $\lambda \rightarrow$ relax the constraints.
 - Iteratively $(\lambda^{(t)} \xrightarrow{Inference} Y \xrightarrow{Gradient} \lambda^{(t+1)})$
 - Inference with the trained multipliers $\lambda^{(T)}$.
- Leverage linguistic properties of the target to facilitate the transfer. Contributions
- We explore *corpus linguistic statistics* derived from WALS features and compile them into *corpus-wise constraints* to guide the inference process during the test time.
- We improve the performances on 17 out of 19 target languages.

Background

Graph-Based Parser:

• Assigns a score for every word pair and conducts inference to derive a directed spanning tree with the highest accumulated score. • Integer linear program (ILP) Inference: $\max_{Y \in \mathcal{Y}} \sum_{k,i,j} S_{ij}^{(\kappa)} y_k(i,j)$

Corpus-Statistics Constraints

Unary constraints:

- Statistics regarding a particular POS tag (*POS*).
- E.g. Spanish:

- Posterior Regularization (Middle).
 - Treat the model as a probability model p_{θ} :

 $p_k(i,j) \propto \exp S_{ii}^{(k)}$

• Define the feasible set *Q* by constraints:

 $r_i - \theta_i \leq R(C_i, q) \leq r_i + \theta_i, i \in [N]$

• Find the closest distribution in Q from p_{θ} :

 $q^* = \arg\min_{q \in Q} KL(q||p_{\theta})$

• MAP inference based on the feasible

distribution q^* .

 $Y = \arg \max_{Y \in \mathcal{Y}} q^*(Y)$ $= \arg \max_{\mathbf{Y} \in \mathcal{Y}} \left[\begin{array}{c} q_k^*(i,j)^{\mathbf{y}_k(i,j)} \end{array} \right]$

NOUN VERB DET NOUN ADP DET NOUN ADP NOUN PUNCT DET Este triunfo supuso su comienzo en mundo de el moda

Heads of NOUN appears on the left 82.9% of the time. **Binary constraints:**

• Statistics regarding a pair of POS tags (POS_1, POS_2).

• E.g. In Hindi, ADP appears on the right of NOUN in ADP-NOUN arcs 99.9% of the time

Results

• Significant improvements in low-resource languages. Keep or slightly improve the performance in common languages.

• Analysis about individual constraints and the relation between improvements and ratio gap (*Highly related, Pearson 0.938*).

Model	UAS	coverage	Δ
baseline	54.3	N/A	N/A
+Proj.	54.6	N/A	+0.3
+Proj.+C1	57.0	0.24	+2.4
+Proj.+C2	55.7	0.08	+1.1

- Given parse trees Y and a constraint C, we define the ratio function R(C, Y).

$$R(C,Y) \coloneqq \frac{\sum_{k} \sum_{i,j:(k,i,j) \in C^{+}} y_{k}(i,j)}{\sum_{k} \sum_{i,j:(k,i,j) \in C^{+} \cup C^{-}} y_{k}(i,j)},$$

- Constraints: statistics of Y consistent with the pre-defined

ratio *r*:

 $r-\theta \leq R(C,Y) \leq r+\theta.$ θ : pre-defined margin

- WALS features \rightarrow three types of constraints:

$$WALS_{NOUN} \xrightarrow{LinearRegression} C1 = (NOUN),$$

 $WALS_{85A} \rightarrow C2 = (NOUN, ADP),$ $WALS_{87A} \rightarrow C3 = (NOUN, ADJ).$ - Dominant order \rightarrow 75% or more.