

GEMNET: Effective gated gazetteer representations for recognizing complex entities in low-context input **Tao Meng**^{1,2}, Anjie Fang², Oleg Rokhlenko², Shervin Malmasi² ¹University of California, Los Angeles ²Amazon.com Inc.

verv	view
	verv

Motivations

- Named Entity Recognition (NER) remains difficult in real-world settings.
- Existing benchmark datasets cannot represent these challenges.

Contributions

- We developed new datasets to represent the current challenges in NER.
- We proposed GEMNET, a flexible architecture supporting external gazetteers.
- We analyzed the effects of gazetteer integration method, training method, gazetteer coverage and training data size

Newly Purposed Datasets

NER Taxonomy

- Follow WNUT 2017 taxonomy
- Emphasize complex entities
- LOWNER (Low-Context Wikipedia NER)
 - Source: Wikipedia
 - Minimize the context around the entities
 - •e.g. "the regional capital is *oranjestad, sint* eustatius."

MSQ-NER (MS-MARCO Question NER)

Gazetteers

• Source: Wikidata KB • Size: 1.67 million • Follow our NER Taxonomy

Current Challenges in NER

Short text:

- In voice, search, ...
- e.g. search query "<*PROD*> reviews" **Long-tail entities:**
- In domains with many entities
- e.g. "A version for the sega cd was announced"

Emerging entities:

- In domains with rapidly growing entities
- e.g. "when did AirPods Pro 2 com out"
- **Complex entities:**
- e.g. "what about *To Kill a Mockingbird*"

- Source: MS-MARCO QnA corpus (V2.1)^[1]
- Templatize the questions
- •e.g. "where was <*CW*> filmed"

ORCAS-NER (Search Query NER)

- Source: ORCAS dataset^[2]
- Templatize the user queries

Scan to get the datasets link

		_											
Set Dataset 7	Dataset Type #	Type # Sentend	# Sentence	# Token	# Token # Entity	Avg. Sent Len	Entity Type Distribution						
	Dataset	Dataset	Type	# Sentence	# TOKEN	# Linuty	Avg. Sent Len	PER	LOC	CORP	GRP	PROD	CW
1	LOWNER	Train	13,424	206,772	13,555	15.40 ± 6.35	5,029	3,791	631	1,941	424	1,805	
2	LOWNER	Dev	3,366	51,651	3,813	$15.34{\pm}6.28$	1,255	1,235	169	565	101	499	
3	LOWNER	Test	1,385,290	21,303,399	490,749	15.37 ± 6.29	215,411	120,480	20,015	52,566	15,976	74,830	
4	MSQ-NER	Test	17,868	98,117	18,993	5.49 ± 1.86	4,586	10,468	679	610	469	2,187	
5	ORCAS-NER	Test	471,746	1,958,020	368,250	4.15 ± 1.75	68,000	162,652	28,738	23,058	18,114	71,461	

Benchmark models on our datasets

- Verify the challenges
- Poor context results in worse performance

CoNLL03	96.9	95.7	96.3
LOWNER	67.5	74.5	70.9
MSQ-NER	38.9	38.7	38.8
ORCAS-NER	56.8	51.6	54.1

[1] Bajaj, et al. 2016. Ms marco: A human generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268 [2]Craswell, et al. 2020. Orcas: 18 million clicked query-document pairs for analyzing search. arXiv preprint arXiv:2006.05324.

GEMNET Architecture

Benchmark Performance

• Improves the baseline

Method	CoNLL03	WNUT17	OntoNotes
Uncased SOTA	91.0	46.1	88.1
BERT Baseline	89.6	46.9	86.9
GEMNET (BERT)	91.3	50.2	88.0

- SOTA on WNUT17 uncased
- Demonstrate GEMNET is generally effective

New Datasets Performance

- Improves the baseline remarkably
- Best architecture in comparison
- Improvements occurs especially for hard entities

	-		
Class	LOWNER	MSQ-NER	ORCAS-NER
PER	+1.9	+21.8	+40.1
LOC	+2.2	+37.5	+46.5
GRP	+8.5	+57.3	+57.2
CORP	+12.7	+57.7	+56.5
CW	+10.2	+58.8	+61.4
PROD	+10.7	+64.2	+62.0

Ablation: Low-resource Setting

- Improves much faster with less data
- Achieves close to maximum with only 20% data

Ablation: Gazetteer Coverage

	LOWN	ER	Msq-N	JER	ORCAS-NER		
Size	Baseline	Ours	Baseline	Ours	Baseline	Ours	
5%	74.2	81.2	52.2	60.4	33.1	44.2	
10%	78.1	86.7	55.3	74.4	33.7	49.1	
20%	81.2	88.7	55.5	81.3	33.9	69.7	
100%	87.0	91.7	57.3	81.9	37.2	70.2	

New Datasets NER Performance (Metrics: F1)

- Easy to update

- Dense Embedding
- BiLSTM Encoding
- **Word Representation: BERT**
- **Mixture of Experts (MoE):**
- A gated architecture to conditional combine multiple experts.
- $w_e = \sigma(\theta[\mathbf{h}_{word}, \mathbf{h}_{CGR}]),$
 - $\mathbf{h} = w_e \cdot \mathbf{h}_{word} + (1 w_e) \cdot \mathbf{h}_{CGR},$
- **Two-stage Training:**
- Word expert is pre-trained but gazetteer expert is not. • First stage: Freeze word expert Second stage: Joint training

How	I	0	0	0	0	
much	1	0	0	0	0	
is	1	0	0	0	0	
is Apple iPhone	0	1	0	1	0	
iPhone	0	1	1	0	0	
12	0	0	1	0	0	

• By row: When the training coverage is fixed, Higher testing coverage \rightarrow higher performance • By column: When the testing coverage is fixed, closer coverage between training and testing \rightarrow higher performance

95	91.42	91.07	89.93	89.69	87.42	85.59	84.64	83.87		- 91
06 -	90.91	90.67	89.93	89.30	87.33	85.81	85.78	84.63		- 90
- 80	90.93	90.68	90.34	89.52	87.63	85.87	84.75	84.32		
70	90.34	90.16	89.75	89.72	88.58	87.16	87.03	86.22		- 89
- 50	90.48	90.28	89.99	89.58	89.30	88.25	87.68	87.57		- 88
25	87.97	87.99	87.92	87.88	87.62	87.60	87.40	87.40		
10	88.52	88.52	88.48	88.43	88.38	88.28	88.25	88.16		- 87
- <u>م</u>	88.03	88.03	88.02	88.02	88.02	88.00	88.01	88.00		
	95	90	80	70	50	25	10	5	. –	- 86

Conclusion

- GEMNET supports external gazetteers, allowing the model's knowledge to be updated without retraining
- The datasets we released can serve as benchmarks for evaluating the entity knowledge possessed by models in future work • To check our paper, please scan the QR code on the right.

